

National Accreditation Board for Testing and Calibration Laboratories (NABL)

Sample Calculations for Measurement Uncertainty in Electrical Testing

ISSUE NO.: 04 ISSUE DATE: 10-Feb-2020 AMENDMENT NO.: --AMENDMENT DATE: --

AMENDMENT SHEET

S. No.	Page No.	Clause No.	Date of Amendment	Amendment	Reasons	Signature QA Team	Signature CEO
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

National Accreditation Board for Testing and Calibration Laboratories				
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing	
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 1 of 32

S. No.	Title	Page No.
	Amendment Sheet	1
	Contents	2
1.	Introduction	3
2.	Scope	4
4.	Uncertainty Calculation for Voltage	5
5.	Uncertainty Calculation for Current	9
6.	Uncertainty Calculation for Power Loss in Energy Meters	13
7.	Uncertainty Calculation for Tripping Characteristic In MCB	17
8.	Uncertainty Calculation for Transformer	22
9.	Uncertainty Calculation for voltage for Power Measurements in 3 Phase Inductor Motor	29

CONTENTS

National Accreditation Board for Testing and Calibration Laboratories				
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing	
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 2 of 32

1. INTRODUCTION

In the broad field of Electrical Engineering, various equipment and systems are used to cater to the application for Electrical power generation, transmission, distribution, control, instrumentation, Communication and domestic application. Each one of the products/ equipment requires a wide variety of tests and hence a need of specialized testing facility.

The field of Electrical Testing covers tests of an essentially electrical nature performed on instruments, equipment, appliances, components and materials.

As per the requirements of clause 7.6 of ISO/ IEC 17025: 2017, the testing laboratories are required to evaluate the Measurement Uncertainty.

When estimating the Measurement Uncertainty, all uncertainty components which are of importance in the given situation shall be taken into account, which shall include but not be limited to:

- a. reference standards and reference materials with reported uncertainty in the calibration certificate(s)
- b. method employed
- c. equipment used with reported uncertainty in the calibration certificate(s)
- d. environmental conditions
- e. properties and condition of the item being tested

The testing laboratories shall identify all the components of uncertainty and make a reasonable estimation for all test parameters, and shall ensure that the form of reporting of the result does not give a wrong impression of the uncertainty. The degree of rigor needed in an estimation of Measurement Uncertainty depends on the requirements of test method, requirements of client and the existence of narrow limits on which decisions on conformance to a specification are based.

All laboratories will calculate the uncertainty of measurement at 95% confidence level.

National Accreditation Board for Testing and Calibration Laboratories				
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing	
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 3 of 32

2. SCOPE

As per the requirements of clause 7.6 of ISO/ IEC 17025: 2017, the testing laboratories are required to evaluate the Measurement Uncertainty. This document guides the laboratory to evaluate the Measurement Uncertainty for Electrical Testing.

A few examples of Measurement Uncertainty in the field of Electrical Testing have been illustrated in this document.

National Accreditation Board for Testing and Calibration Laboratories				
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing	
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 4 of 32

Sample 1

UNCERTAINTY CALCULATION FOR VOLTAGE (at Power frequency)

Product	:	MCB, 32 A, 240/ 415V, Single pole
Test	:	Short circuit test of MCB
Equipment used	:	Digitizer with Amplifier
Range used for calibration	:	62.5 –1000 Volt
Accuracy	:	0.16 % of Reading
Uncertainty of Digitizer with Amplifier from its calibration certificate	:	0.281 %
Resolution	:	0.0001 Volt

Reading No.	Voltage (Volts)
1	250.2
2	250.3
3	250.1
4	250.2
5	250.3

Assuming contribution due to frequency is negligible

Type A Evaluation

Mean Rdg. (Volts)	=	250.22 Volts	(R1+R2+R3+R4+R5)/ 5
Standard deviation	=	0.0836 Volts	
Std. uncertainty Ur	=	0.0374 Volts	Standard Deviation/ sqrt (5)
Degree of freedom	=	$V_1 = 5 - 1 = 4$	
Std. uncertainty (% U _r)	=	0.0149 %	U _r *100/ Mean Reading

National Accreditation Board for Testing and Calibration Laboratories				
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing	
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 5 of 32

Type B Evaluation

1. Uncertainty of Digitizer with Amplifier from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2

2. Accuracy of Digitizer with Amplifier

 A_2 = 0.16 % of reading = 0.16 * 250.22 * 0.01 = 0.400 Volts = EstimateFor rectangular distribution, the standard uncertainty = U_2 = A_2 / sqrt(3) U_2 = 0.231 Volts% U_2 = 0.0924 % U_2 * 100/ Mean Reading

Degree of freedom V_3 = infinity

3. Uncertainty due to resolution of display unit = U_3

 A_3 = 0.0001/2 = 0.00005 Volts = Estimate

For rectangular distribution, the standard uncertainty = $U_3 = A_3/$ sqrt(3)

U₃ = 0.000028 Volts

 $% U_3 = 0.0000115 \% U_3 * 100$ Mean Reading

Degree of freedom V_4 = infinity

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing		
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 6 of 32	

Combined standard uncertainty (U_c)

$$U_{c} = sqrt(U_{r}^{*}U_{r}) + (U_{1}^{*}U_{1}) + (U_{2}^{*}U_{2}) + (U_{3}^{*}U_{3})$$

- $U_c = 0.423$ Volts
- $% U_c = 0.169 \% U_c * 100$ / Mean Reading

Effective degrees of freedom (v_{eff}) =

Expanded Uncertainty at approximately 95% level of confidence, the coverage factor k=2, Thus

U	= k*Uc	= 2 * 0.423 Volts
U	= 0.85 Volts	
% U	= 0.34 %	U * 100/ Mean Reading

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 7 of 32	

Uncertainty Budget

Source of Uncert- ainty Xi	Estimates xi	Limits %	Probability Distribution Type A or B	Standar Uncerta (Volts)	d inty	Sensitivity Coefficient Ci	Uncertaint Contributi Ui (y)	y on	Degree of freedom
			Factor	Volts	%		Volts	%	Vi
U ₁		0.281	Normal type B – k=2	0.352	0.141	1.0	0.352	0.141	Infinity
U ₂		0.16	Rectangular Type B sqrt(3)	0.231	0.0924	1.0	0.231	0.0924	Infinity
U ₃		0.0000 19	Rectangular Type B sqrt(3)	0.0000 28	0.0000115	1.0	0.000028	0.0000115	Infinity
Repeata- bility (U _r)	250.22		Normal Type A	0.0374	0.0149	1.0	0.0374	0.0149	4
Uc				0.423	0.169		0.423	0.169	Infinity
Expanded Uncertainty (U)			k = 2				0.85	0.34	Infinity

Reporting of results:

Voltage = 250.22 Volts \pm 0.85 Volts

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 8 of 32	

Sample 2

UNCERTAINTY CALCULATION FOR CURRENT (at power frequency)

Product	:	MCCB, 800 A, 415V, Four pole
Test	:	Short circuit test of MCCB
Equipment used	:	
1) Digitizer with Amplifier		
Range used for calibration	:	0.625 –10 Volts
Accuracy	:	0.19 % of Reading
Uncertainty of Digitizer with Amplifier from its calibration certificate	:	0.281 %
Resolution	:	0.0001 V
2) <u>Shunt</u>		

Uncertainty of shunt (%) from its calibration : 1.156 certificate

Reading No.	Current (kAmp.)
1	50.26
2	50.23
3	50.28
4	50.24
5	50.23

Assuming contribution due to frequency is negligible

Type A Evaluation

Mean Rdg. (kAmp.)	= 50.248 (kAmp.)	(R1+R2+R3+R4+R5)/ 5
Standard deviation	= 0.0216 (kAmp.)	
Std. uncertainty Ur	= 0.00969 (kAmp.)	Standard Deviation/ sqrt(5)
Degree of freedom	$= V_1 = 5 - 1 = 4$	
Std. uncertainty (% Ur)	= 0.0193 %	Ur *100/ Mean Reading

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 9 of 32	

Type B Evaluation

1. Uncertainty of Digitizer with Amplifier from its calibration certificate. The distribution is normal and the coverage factor at approximately 95% confidence level is 2

2. Digitizer with Amplifier Accuracy

 $A_2 = 0.19\%$ of reading = 0.19 * 50.248 * 0.01 = 0.09547 kAmp. = Estimate

For rectangular distribution, the standard uncertainty = $U_2 = A_2/$ sqrt(3)

 $U_2 = 0.0551 \text{ kAmp.}$

 $\% U_2 = 0.109 \%$ U₂ * 100/ Mean Reading

Degree of freedom V_3 = infinity

3. Uncertainty due to resolution of display unit = U_3

 $A_3 = 0.0001/2 = 0.00005 \text{ kAmp.} = \text{Estimate}$

For rectangular distribution, the standard uncertainty = $U_3 = A_3/$ sqrt(3)

 $U_3 = 0.000028 \text{ kAmp.}$ % $U_3 = 0.000057 \text{ \%}$ $U_3 * 100 \text{/ Mean Reading}$

Degree of freedom V_4 = infinity

4. Uncertainty of shunt from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2.

U ₄ (%)	$= A_4/2$	= 1.156/2	= 0.578 %				
U ₄	= 0.578 * 50).248 * 0.01	= 0.290 kAmp.				
Estimate	= 1.156 * 50	.248 * 0.01	= 0.580 kAmp.				
Degree of freedom V_5 = infinity							

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	c. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing				
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 10 of 32	

Combined standard uncertainty (U_c)

$$U_{c} = sqrt(U_{r}^{*}U_{r}) + (U_{1}^{*}U_{1}) + (U_{2}^{*}U_{2}) + (U_{3}^{*}U_{3}) + (U_{4}^{*}U_{4})$$

$$U_c = 0.310 \text{ kAmp.}$$

$$% U_c = 0.617 \%$$
 $U_c * 100 / Mean Reading$

Effective degrees of freedom (v_{eff}) =

Expanded Uncertainty for approximately 95 % level of confidence, the coverage factor k=2, Thus

U	= k * U _c	= 2 * 0.310 kAmp.
U	= 0.620 kAmp.	
% U	= 1.234 %	U * 100/ Mean Reading

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing				
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 11 of 32	

Uncertainty Budget

Source of Estimates Uncert- xi ainty Xi		Limits %	Probability Distributio n Type A	Standard Uncertainty (Volts)		Sensitivity Coefficien t	Uncertainty Contribution Ui (y)		Degree of freedom
			or B Factor	kAmp.	%	Ci	kAmp.	%	Vi
U ₁		0.281	Normal Type B 2	0.0708	0.141	1.0	0.0708	0.141	Infinity
U ₂		0.190	Rectangular Type B sqrt(3)	0.0551	0.109	1.0	0.0551	0.109	Infinity
U ₃		0.00005	Rectangular Type B sqrt(3)	0.000028	0.000057	1.0	0.000028	0.000057	Infinity
U ₄		1.156	Normal Type B 2	0.2963	0.578	1.0	0.2963	0.578	Infinity
Repeatabi- lity (U _r)	50.248		Normal Type A	0.00969	0.0193	1.0	0.00969	0.0193	4
Uc				0.310	0.617		0.310	0.617	Infinity
Expanded Uncerta- inty (U)			k = 2				0.620	1.234	Infinity

Reporting of results:

Current = 50.248 kAmp \pm 0.620 kAmp.

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing		
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 12 of 32	

Sample 3

UNCERTAINTY CALCULATION FOR POWER LOSS IN ENERGY METERS

Product	:	Static energy meter
Test	:	Power loss measurement in Energy Meters
Equipment used	:	Digital wattmeter
Range	:	20 Watts
Accuracy	:	0.5 % of Reading
Uncertainty of watt meter from its calibration certificate	:	0.0953 %
Resolution	:	0.01 Watts

Reading No.	Power loss (Watt)
1	0.67
2	0.68
3	0.68
4	0.68
5	0.68

Type A Evaluation

Mean Rdg.(Watt)	= 0.678 Watt (R1+R2+R3+R4+R5)/ 5
Standard deviation	= 0.0044721 Watt
Std. uncertainty U _r	= 0.002 Watt Standard Deviation/ sqrt(5)
Degree of freedom	$= V_1 = 5-1 = 4$
Std. uncertainty (% U _r)	= 0.295 % U_r *100/ Mean Reading

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing		
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 13 of 32	

Type B Evaluation

2.

3.

1. Uncertainty of watt meter from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2

 $= A_1/2 = 0.0953/2$ U₁(%) = 0.04765 % $= 0.04765 * 0.678 * 0.01 = 0.323 * 10^{-3} W$ U₁ Degree of freedom V_2 = infinity From watt meter specification (Accuracy) = 0.5% of reading = 0.5 * 0.678/ 100 = 0.00339 Watt A_2 For rectangular distribution, the standard uncertainty $= U_2 = A_2 / sqrt(3)$ U_2 = 0.00195 watt % U₂ U₂ * 100/ Mean Reading = 0.2876 % Degree of freedom V_3 = infinity Uncertainty due to resolution of watt meter = U_3 = 0.01/2 = 0.005 Watt A₃ For rectangular distribution, the standard uncertainty = $U_3 = A_3/$ sqrt(3) U₃ = 0.002886 Watt % U₃ U₃ * 100/ Mean Reading = 0.4257 % Degree of freedom V_4 = infinity

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing		
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 14 of 32	

Combined standard uncertainty (U_c)

$$U_c = sqrt(U_r^*U_r) + (U_1^*U_1) + (U_2^*U_2) + (U_3^*U_3) = 0.00402$$

 $% U_c = 0.59 \%$

Effective degrees of freedom (v_{eff}) =

			(U _c)	4			
Veff	=	(U ₁) ⁴ V ₂	+	(U ₂) ⁴ + V ₃	(U ₃) ⁴ V ₄	+	(Ur) ⁴ V ₁
			(0.5	59) ⁴			
V _{eff}	=	(0.0476	5) ⁴ - +	(0.2876) ⁴ +	(0.4257) ⁴	+	(0.295)4
		8		∞	8		4
v_{eff}	=	64					

Expanded Uncertainty for approximately 95% level of confidence, the coverage factor k=2, Thus

 $U = k^* U_c = 2^* \ 0.00402 = 0.008 \ W$

% U = 1.18 % U^{*} 100/mean Reading

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing		
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 15 of 32	

Uncertainty Budget

Source of Uncertainty Xi	Estimates xi	Limits %	Probability Distribution Type A or B Factor	Standard Uncertainty %	Sensitivity Coefficient Ci	Uncertainty Contribution Ui(y) %	Degree of freedom Vi
U1		0.0953	Normal type B – 2	0.04765	1.0	0.04765	infinity
U ₂		0.5	Rectangular Type B sqrt(3)	0.2876	1.0	0.2876	Infinity
U ₃		0.7373	Rectangular Type B sqrt(3)	0.4257	1.0	0.4257	Infinity
Repeatability	0.678 W		Normal Type A	0.295	1.0	0.295	4
U _c %						0.59	64
Expanded Uncertainty			k = 2			1.18	Infinity

Reporting of results:

Power loss = 0.678 Watt \pm 0.008 Watt

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 16 of 32	

Sample 4

UNCERTAINTY CALCULATION FOR TRIPPING CHARACTERISTIC IN MCB

Product	:	MCB, 4 A
Test	:	Tripping characteristic at 2.55 In
Standard used	:	1) <u>Digital time interval meter</u>
Range used	:	99.99 seconds
Accuracy	:	0.5 % of Reading
Uncertainty of time interval meter from its calibration certificate	:	0.015 %
Resolution	:	0.01 seconds
		2) Current transformer (CT)
Range used	:	20/ 5 A
Accuracy	:	0.2 % of Reading
Uncertainty of time interval meter from its calibration certificate	:	0.092 %
		3) Digital AC Ammeter
Range used	:	0 -10 A
Accuracy	:	0.5 % of Reading
Uncertainty of time interval meter from its calibration certificate	:	0.0281 %
Resolution	:	0.01 A

Reading No.	Tripping time in seconds
1	18.01
2	18.26
3	18.76
4	18.68
5	18.16

National Accreditation Board for Testing and Calibration Laboratories							
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing							
Issue No.: 04	Issue Date: 10-Feb-2020	Page No.: 17 of 32					

Type A Evaluation

Mean Rdg.(seconds)	= 18.374 seconds	(R1+R2+R3+R4+R5)/ 5
Standard deviation	= 0.329 second	
Std. uncertainty Ur	= 0.147 second	Standard Deviation/ sqrt(5)
Degree of freedom	$= V_1 = 5 - 1 = 4$	
Std. uncertainty (% U _r)	= 0.801 %	U _r *100/ Mean Reading

Type B Evaluation

1. Uncertainty of time interval meter from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2

A ₁	= 0.015 %
U ₁ (%)	$= A_1/2 = 0.015/2 = 0.0075 \%$
U ₁	= 0.0075 * 18.374 * 0.01 = 0.0014 second

Degree of freedom V_2 = infinity

2. From time interval Meter specification (Accuracy)

 A_2 = 0.5% of reading = 0.5 * 18.3740 * 0.01 = 0.092 seconds

For rectangular distribution, the standard uncertainty = $U_2 = A_2/$ sqrt(3)

U₂ = 0.0531 second

 $\% U_2 = 0.289 \% U_2 * 100$ / Mean Reading

Degree of freedom V_3 = infinity

- **3.** Uncertainty due to resolution of Meter = U_3
 - $A_3 = 0.01/2 = 0.005$ seconds

For rectangular distribution, the standard uncertainty = $U_3 = A_3/$ sqrt(3)

- U₃ = 0.0029 seconds
- $U_3 = 0.016$ $U_3 * 100 / Mean Reading$

Degree of freedom V_4 = infinity

National Accreditation Board for Testing and Calibration Laboratories							
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing							
Issue No.: 04	Issue Date: 10-Feb-2020 Amend. No.: Amend. Date: Page No.: 18 of 3						

Uncertainty of CT from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 1.96

 $A_4 = 0.092 \%$

 U_4 (%) = A₄/2= 0.092/2 = 0.046 %

Degree of freedom V_5 = infinity

From CT specification (Accuracy)

 $A_5 = 0.2\%$ of reading

For rectangular distribution, the standard uncertainty = $U_5 = A_5/$ sqrt(3)

 $% U_5 = 0.115 \%$

Degree of freedom V_6 = infinity

5. Uncertainty of Ammeter from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 1.96

 $A_6 = 0.0281 \%$

 $U_6(\%) = A_6/2 = 0.0281/2 = 0.141\%$

Degree of freedom V_7 = infinity

6. From Ammeter specification (Accuracy)

 $A_7 = 0.5\%$ of reading

For rectangular distribution, the standard uncertainty = $U_2 = A_2/$ sqrt(3)

 $\% U_7 = 0.289 \%$

Degree of freedom V_8 = infinity

7. Uncertainty due to resolution of Meter = U8

 $A_8 = 0.01/2 = 0.005$

For rectangular distribution, the standard uncertainty = $U_8 = A_8/$ sqrt(3)

% U_8 = 0.005/ sqrt(3)= 0.016 %

Degree of freedom V_9 = infinity

National Accreditation Board for Testing and Calibration Laboratories							
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing							
Issue No.: 04	Issue Date: 10-Feb-2020	Page No.: 19 of 32					

Combined standard uncertainty = U_c

$$U_{c} = sqrt(U_{r}^{*}U_{r}) + (U_{1}^{*}U_{1}) + (U_{2}^{*}U_{2}) + (U_{3}^{*}U_{3}) + (U_{4}^{*}U_{4}) + (U_{5}^{*}U_{5}) + (U_{6}^{*}U_{6}) + (U_{7}^{*}U_{7}) + (U_{8}^{*}U_{8})$$

% U_c = 0.900 % U_c * 100/ Mean Reading

Effective degrees of freedom (v_{eff}) = (U_c)⁴ = ------Veff $(U_r)^4$ $(U_1)^4$ $(U_2)^4$ $(U_3)^4$ $(U_4)^4$ $(U_5)^4$ $(U_6)^4$ $(U_7)^4$ $(U_8)^4$ $\frac{1}{V_1} + \frac{1}{V_2} + \frac{1}{V_3} + \frac{1}{V_4} + \frac{1}{V_5} + \frac{1}{V_6} + \frac{1}{V_7} + \frac{1}{V_8} + \frac{1}{V_9}$ (0.900)⁴ = ------ $(0.801)^4$ $(0.0075)^4$ $(0.289)^4$ $(0.016)^4$ $(0.046)^4$ $(0.115)^4$ $(0.0141)^4$ $(0.289)^4$ $(0.016)^4$ **4** ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ $(0.900)^4$ = ------(0.801)4 ----- + 0 4 = 6.375

Expanded Uncertainty for 95% level of confidence, the coverage factor k=2.45,

Thus $U = k^*U_c = 2.45^*0.900$

% U = 2.205 %

National Accreditation Board for Testing and Calibration Laboratories							
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing							
Issue No.: 04	Issue Date: 10-Feb-2020 Amend. No.: Amend. Date: Page No.: 20 c						

Uncertainty Budget

Source of Uncertainty Xi	Estimates xi.	Limits %	Probability Distribution Type A or B Factor	Standard Uncertainty %	Sensit. Coefficient Ci	Uncertainty Contribution Ui(y) %	Degree of freedom Vi
U ₁		0.015	Normal type B – 2	0.0075	1.0	0.0075	infinity
U ₂		0.5	Rectangular Type B sqrt(3)	0.289	1.0	0.289	Infinity
U ₃		0.005	Rectangular Type B sqrt(3)	0.016	1.0	0.016	Infinity
U ₄		0.092	Normal type B – 2	0.046	1.0	0.0046	infinity
U ₅		0.2	Rectangular Type B sqrt(3)	0.115	1.0	0.0115	Infinity
U ₆		0.0281	Normal type B – 2	0.0141	1.0	0.0141	infinity
U ₇		0.5	Rectangular Type B sqrt(3)	0.289	1.0	0.289	Infinity
U ₈		0.5	Rectangular Type B sqrt(3)	0.016	1.0	0.016	Infinity
Repeatabilit y	18.374		Normal Type A	0.801	1.0	0.801	4
Uc (seconds)						0.900	6.375
Expanded Uncertainty			k = 2.45			2.205	Infinity

Reporting of results:

Tripping time = 18.374 seconds \pm 2.205 %

= 18.374 seconds \pm 0.405 seconds

National Accreditation Board for Testing and Calibration Laboratories							
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing							
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 21 of 32			

Sample 5

UNCERTAINTY CALCULATION FOR TRANSFORMER

Product	:	Distribution transformer
Test	:	Separate Source Voltage Withstand Test (Power Frequency Voltage Withstand Test)
Standards used	:	
1) <u>Capacitive voltage Divider and peak</u> voltmeter		
Range used for testing	:	0-50 kV
Accuracy	:	0.03 % of FSD
Uncertainty of Capacitive voltage Divider and peak voltmeter from its calibration certificate	:	0.0443 %
Resolution	:	0.2 kV
2) Digital Stop watch		
Range used for testing	:	0-99.99 seconds
Accuracy	:	0.02 % of RDG
Uncertainty of Digital Stop watch from its calibration certificate	:	0.0146 %
Resolution	:	0.0001 second

Reading No.	Voltage (kV)
1	28
2	28
3	28
4	28
5	28

Type A Evaluation

Mean Reading (kV.)	=	28 kV	(R1+R2+R3+R4+R5)/ 5
Standard deviation	=	0	
Std. uncertainty U _r	=	0.0	Standard Deviation/ sqrt(5)
Degree of freedom = V_1	=	5 – 1 = 4	
Std. uncertainty (% U _r)	=	0.0	U _r * 100/ Mean reading

National Accreditation Board for Testing and Calibration Laboratories							
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing							
Issue No.: 04	Issue Date: 10-Feb-2020	Page No.: 22 of 32					

Type B Evaluation

A. Voltage Parameter

1. Uncertainty of Capacitive voltage Divider and peak voltmeter from its calibration certificate.

 $A_1 = 0.0443 \%$

The distribution is normal and the coverage factor for approximately 95% confidence level is 2

 $U_1(\%)$ = $A_1/2 = 0.0443/2 = 0.02215 \%$ Estimate= 0.0443 * 28 * 0.01 = 0.0124 kV.

Degree of freedom V_2 = infinity

2. Accuracy of Capacitive voltage Divider and peak voltmeter

A ₂	=	0.03% of FSD		
	=	0.03 * 50 * 0.01	= 0.01	5 kV
For rectangular distril	bution, 1	the standard uncertainty	= U ₂	= A ₂ / sqrt(3)
U ₂	=	0.0086 kV		
% U ₂	=	U ₂ * 100/ Mean Reading		

= 0.0086 * 100/ 28 = 0.031 %

Degree of freedom V_3 = infinity

- 3.Uncertainty due to resolution of Capacitive voltage Divider and peak voltmeter
 A_3 = 0.2/2 = 0.1 kV = Estimate $A_3(\%)$ = 0.1 * 100/28 = 0.357 %For rectangular distribution, the standard uncertainty = U₃ = A₃/ sqrt(3) U_3 = 0.0577 kV
 - $% U_3 = U_3 * 100$ / Mean Reading

= 0.0577 * 100/ 28 = 0.206 %

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing		
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 23 of 32	

Combined standard uncertainty (U_c)

$$U_c = sqrt(U_r^2 + U_1^2 + U_2^2 + U_3^2)$$

 $\% U_c = 0.21 \%.$

Effective degrees of freedom (v_{eff}) =

	_	(U _c)	4		
Veff	=(U ₁)	,4 ▲	(U ₂) ⁴	(U ₃) ⁴	(U _r) ⁴
	V ₂	+	V ₃	V ₄	V ₁
v_{eff}	= ir	nfinity			

Expanded Uncertainty for approximately 95% level of confidence, the coverage factor k=2, Thus

 $U = k^*U_c = 2 * 0.21 \%$

Total expanded uncertainty for voltage parameter % U = 0.42 %

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 24 of 32		

Type B Evaluation

B. <u>Time Parameter</u>

1. Uncertainty of Digital Stop watch from its calibration certificate. $A_1 = 0.0146 \%$

The distribution is normal and the coverage factor for approximately 95% confidence level is 2

 $U_1(\%) = 0.0146/2 = 0.0073\%$

Estimate = 0.0146 * 60 * 0.01 = 0.00876 sec

Degree of freedom V_2 = infinity

2. Accuracy of Digital Stop watch

 $A_2 = 0.02\%$ of reading

For rectangular distribution, the standard uncertainty = $U_2 = A_2/$ sqrt(3)

 $% U_2 = 0.0115 \%$

Estimate = 0.02 * 60 * 0.01 = 0.012 sec

Degree of freedom V_3 = infinity

3. Uncertainty due to resolution of Digital Stop watch

A ₃	=	0.0001/2	=	0.00005 sec.	= Estimate
A ₃	=	0.00005 * 100/ 60	=	0.000083 %	
For rectangular distrib	outio	on, the standard ur	nce	rtainty = U_3	=A ₃ / sqrt(3)
U ₃	=	0.0000288 sec.			

% $U_3 = U_3 *100$ / Mean Reading = 0.000048 %

Degree of freedom V_4 = infinity

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 25 of 32		

Combined standard uncertainty (U_c)

$$U_c = sqrt(U_r^2 + U_1^2 + U_2^2 + U_3^2)$$

% $U_c = 0.0137$ %.

Effective degrees of freedom (v_{eff}) =

11 "		(U _c) ⁴			
Vett	 (U ₁) ⁴	т.	(U ₂) ⁴	(U ₃) ⁴	(U _r) ⁴
	V ₂	•	V ₃	V ₄	V ₁

 v_{eff} = infinity

Expanded Uncertainty for approximately 95% level of confidence, the coverage factor k=2, Thus

$$U = k * U_c = 2 * 0.0137 \%$$

Total expanded uncertainty for time parameter % U = 0.0275 %

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing			
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 26 of 32		

Uncertainty Budget

Source of uncertainty	Estimate	Limits %	Probability distribution	Divisor	std. uncert.	Sensitivity Coefficient	Uncertainty Contribution %	Degree of freedom
U₁ ('Uncertainty of CVD & PVM)		0.04430	Normal	2	0.02215	1	0.02215	Infinity
U ₂ ('Accuracy of CVD & PVM)		0.03% of FSD	Rectangular	1.73205	0.031	1	0.031	Infinity
U₃ (Resolution of CVD & PVM)	0.2 kV	0.357	Rectangular	1.73205	0.206	1	0.206	Infinity
U _r (Type-A- Repeatability)	28 kV	0.00000	Normal	1	0.0000	1	0.0000	4
Combined std. Uncertainty (%)							0.21	Infinity
Expanded uncertainty (%)			k =	2			0.42	Infinity

A. VOLTAGE PARAMETER

Reporting of results:

Applied Voltage = 28 kV ± 0.42 % = 28 kV ± 0.1176 kV

B. TIME PARAMETER

Source of uncertainty	Estimate	Limits	Probability distribution	Divisor	std. uncert.	Sensitivity Coefficient	Uncertainty Contribution %	Degree of freedom
U₁ ('Uncertainty of Stop watch)		0.01460	Normal	2	0.0073	1	0.0073	Infinity
U ₂ ('Accuracy of stop watch)		0.02000	Rectangular	1.73205	0.0115	1	0.0115	Infinity
U_3 (Resolution of stop watch)	0.0001 sec	0.000083	Rectangular	1.73205	0.000048	1	0.000048	Infinity
U _r (Type-A- Repeatability)	60 sec	0.00000	Normal	1.00000	0.0000	1	0.0000	4
Combined std. Uncertainty (%)							0.0137	Infinity
Expanded uncertainty (%)			k =	2			0.0275	Infinity

Reporting of results:

Time of Voltage Application = 60 seconds \pm 0.0275 % = 60 seconds \pm 0.0165 seconds

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing					
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 27 of 32		

Sample 6

UNCERTAINTY CALCULATION FOR VOLTAGE FOR POWER MEASUREMENTS IN 3 PHASE INDUCTOR MOTOR

Product	:	3 phase Induction motor	
Test	:	Full load test	
Equipment used	:	Wattmeter-3phase 3 wire (2 wattmeter method) Current Transformer (a) Current Transformer (b)	
Accuracy	:	Wattmeter 0.5	
Uncertainty from calibration report	:	Wattmeter	0.0953%
Resolution	:	Current transformer (a) Current transformer (b) Wattmeter	0.092% (ratio error - 0.31%) 0.092% (ratio error - 0.426%) 1 W
CT Patio		15/5 -	3
No. of Observation		5	5
Accuracy Uncertainty from calibration report Resolution CT Ratio No. of Observation	: : : : :	(2 wattmeter method) Current Transformer (a) Current Transformer (b) Wattmeter 0.5 Wattmeter Current transformer (a) Current transformer (b) Wattmeter 15/ 5 = 5	0.0953% 0.092% (ratio error - 0.31% 0.092% (ratio error - 0.426 1 W 3

Reading No.	Measured Power (Wattmeter rdg.) W	Actual Power (=Wattmeter rdg * CT ratio) W
1	3260	9780
2	3281	9843
3	3260	9780
4	3282	9846
5	3284	9852

Type A Evaluation

Mean Rdg. (Wattmeter rdg)	=	3273.4 W	(R1+R2+R3+R4+R5)/ 5
Mean Rdg. (Actual Power)	=	9820.2 W	
Standard deviation	=	36.84 W	
Standard Uncertainty Ur	=	16.475 W	Standard Deviation/ sqrt(5)
Degree of freedom	=	$V_1 = 5 - 1 = 4$	
Std. uncertainty (% Ur)	=	0.168 %	U _r *100/ Mean Reading

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing			
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 28 of 32		

Type B Evaluation

2.

3.

1. Uncertainty of Wattmeter from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2

A ₁	= 0.0953 %	
U1(%)	= A ₁ /2 =	0.0953/2 = 0.048 %
U ₁	= 0.048 * 3273.4 * 0.01	= 1.571 W
Estimate	= 0.0953 * 3273.4 * 0.04	= 3.12 W
Degree of freedom	$V_2 = infinity$	
Accuracy of Wattme	eter	
A ₂	= 0.5 %	
For rectangular dist	ribution, the standard unce	tainty = $U_2 = A_2 / \text{sqrt}(3)$
U ₂ (%)	= 0.289 %	
U_2	= 0.289 * 3273.4 * 0.01	= 9.46 W
Estimate	= 0.5 * 3273.4 * 0.01	= 16.367 W
Degree of freedom	$V_3 = infinity$	
Uncertainty due to	esolution of Wattmeter	= U ₃
A ₃	= 1/2	= 0.5 W
For rectangular dist	ribution, the standard unce	tainty = $U_3 = A_3/$ sqrt(3)
U ₃	= 0.289 W	
U ₃ (%)	= 0.008 %	
Estimate	= 0.5 W	
Degree of freedom	V ₄ = infinity	

4. Uncertainty of current transformer (a) from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2

A₄ = 0.092 %

 U_4 (%) = $A_4/2$ = 0.092/2 = 0.046 %

Degree of freedom V_5 = infinity

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing			
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 29 of 32		

5. Ratio error for current transformer (a) from its calibration certificate

A₅ = 0.31 %

For rectangular distribution, the standard uncertainty = $U_5 = A_5/$ sqrt(3)

 U_5 (%) = 0.178 %

Degree of freedom V_6 = infinity

6. Uncertainty of current transformer (b) from its calibration certificate. The distribution is normal and the coverage factor for approximately 95% confidence level is 2

 $A_6 = 0.092 \%$ $U_6 (\%) = A_6/2 = 0.092/2 = 0.046 \%$ Degree of freedom V₇ = infinity

7. Ratio error for current transformer (b) from its calibration certificate.

 $A_7 = 0.426 \%$

For rectangular distribution, the standard uncertainty is = $U_7 = A_7/$ sprt(3)

 U_7 (%) = 0.246

Degree of freedom V_8 = infinity

National Accreditation Board for Testing and Calibration Laboratories					
Doc. No.: NABL 174	Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing				
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 30 of 32	

Combined standard uncertainty (U_c)

$$U_{c} = sqrt(U_{r}^{*}U_{r} + U_{1}^{*}U_{1} + U_{2}^{*}U_{2} + U_{3}^{*}U_{3} + U_{4}^{*}U_{4} + U_{5}^{*}U_{5} + U_{6}^{*}U_{6} + U_{7}^{*}U_{7})$$

% U_c = 0.459 %

Effective degrees of freedom (v_{eff}) =

$$v_{\rm eff}$$
 = 222.9

Expanded Uncertainty for approximately 95% level of confidence, the coverage factor k = 2, Thus

 $U = k^*U_c = 2^* 0.459$

% U = 0.918 %

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174	Sample Calculations for Me	asurement Uncertainty	in Electrical Testing			
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 31 of 32		

Uncertainty Budget

Source of Uncertainty Xi	Estimates xi	Limits %	Probability Distribution Type A or B Factor	Standard Uncertainty U (xi) %	Sensitivity Coefficient Ci	Uncertainty Contribution Ui (y) Volts %	Degree of freedom Vi
U ₁		0.0953	Normal Type B 2	0.048	1.0	0.048	Infinity
U ₂		0.5	Rectangular Type B sqrt(3)	0.289	1.0	0.289	Infinity
U ₃	0.03	0.015	Rectangular Type B sqrt(3)	0.008	1.0	0.008	Infinity
U ₄		0.092	Normal Type B 2	0.046	1.0	0.046	Infinity
U ₅		0.31	Rectangular Type B sqrt(3)	0.178	1.0	0.178	Infinity
U ₆		0.092	Normal Type B 2	0.046	1.0	0.046	Infinity
U ₇		0.426	Rectangular Type B sqrt(3)	0.246	1.0	0.246	Infinity
Repeatabilit y (U _r)	9820.2		Normal Type A	0.168	1.0	0.168	4
Uc						0.459	222.9
Expanded Uncertainty (U)			k = 2			0.918	Infinity

Reporting of results:

Measured Power	= 9820.2 W ± 0.918%
	$= 0.020.2 \text{ W} \pm 0.01070$

= 9820.2 W \pm 90.1 W

National Accreditation Board for Testing and Calibration Laboratories						
Doc. No.: NABL 174 Sample Calculations for Measurement Uncertainty in Electrical Testing						
Issue No.: 04	Issue Date: 10-Feb-2020	Amend. No.:	Amend. Date:	Page No.: 32 of 32		

National Accreditation Board for Testing and Calibration Laboratories (NABL) NABL House

Plot No. 45, Sector 44, Gurugram - 122003, Haryana Tel. no.: 91-124-4679700 (30 lines) Fax: 91-124-4679799 Website: <u>www.nabl-india.org</u>